MATH 908 Fixed Point Theory

Credits Hours: 3-0

Prerequisites: Some basic knowledge of Analysis

Course objectives: Aims: to teach elements of the metric fixed point theory with applications.Objectives: a successful student will:

Be acquainted with some aspects of the metric fixed point theory;

Have sufficient grounding in the subject to be able to read and understand some researchtexts;

be acquainted with the principal theorems as treated and their proofs and able to use them in the investigation of examples.

Detailed Course Contents: The course includes Lipschitzian, contraction, contractive & non- expansive mappings, Banach's contraction principal with application to differential and integral equations, Brouwer's fixed point theorem with applications, Schauder's fixed point theorem with applications, uniformly convex and strictly convex spaces, properties of non- expansive mappings, Extension's of Banach's contraction principal, Fixed Point Theory in Hausdorff Locally Convex Linear Topological Spaces, Contractive and non-expansive Multivalued maps.

Text Book:

- Introductory Functional Analysis with Applications, E. Kreyszig, John Wiley & Sons, NewYork, 1978.(IFAA)
- Fixed Point Theory and Applications, Agarwal, R., Meehan, M., &O'Regan,(Cambridge Tracts in Mathematics). Cambridge: Cambridge University Press, 2001. (FPTA)

Reference Books:

- An Introduction to Metric Spaces and Fixed Point Theory, M. A. Khamsi, W. A. Kirk, JohnWiley & Sons, New York, 2001.
- 2. Fixed Point Theory, V. I. Istratescu, D. Reidel Publishing Company, Holland, 1981.

Nature of assessment	Frequency	Weightage (%age)
Quizzes	Minimum 3	10-15

ASSESSMENT SYSTEM

Assignments	-	5-10
Midterm	1	25-35
End Semester	1	40-50
Examination		
Project(s)	-	10-20

Weekly Breakdown				
Wee	Section	Topics		
k				
1	1.1, 1.2,	Metric Spaces, Examples of metric spaces. Open sets closed		
	1.3(IFAA)	sets.		
2	2.2, 2.3 (IFAA)	Normed spaces, Banach spaces, Properties of normed spaces		
3	5.1 (IFAA)	Banach fixed point theorem		
4	5.2 (IFAA)	Applications of Banach's Theorem to Linear equations		
5	5.3 (IFAA)	Applications of Banach's Theorem to Differential equations		
6	5.4 (IFAA)	Applications of Banach's Theorem to Integral equations		
7	1 (FPTA)	Contractions		
8	2(FPTA)	Non-expansive maps		
9	Mid Semester	Exam		
10	3(FPTA)	Continuation Methods for Contractive and non-expansive		
		mappings		
11	4(FPTA)	The Theorems of Brouwer, Shauder		
12	5(FPTA)	Nonlinear alternatives of Leray-Shauder type		
13	6(FPTA)	Continuation Principles for Condensing Maps		
14	7(FPTA)	Fixed point Theorem in Conical Shells		
15	8(FPTA)	Fixed Point Theory in Hausdorff Locally Convex		
		LinearTopological Spaces		
16	9(FPTA)	Contractive and non-expansive Multivalued maps		
17		Review		
18	End Semester Exam			